Putting Tests to the Test

Using the Results of Item Analysis to Evaluate the Multiple-Choice Exams

Test construction

Initial considerations . . .

- Classical Test Theory or Item Response Theory?
- Norm-referenced or criterion-referenced?
- Purpose and resources?
- Format?
- Length?
- Content \& cognitive levels?

Anatomy of the MCQ

Writing items

- One best/correct answer
- Avoid "none of the above", "all of the above"
- Stem clearly stated
- Avoid negative wording
- Verbal/linguistic consistency
- Multiple cognitive levels
- Sufficient number of items

Item analysis

- Item difficulty
- Item discrimination
- Reliability
- Coefficient alpha
- Split-half correlation
- Distracter evaluation

Item difficulty

- Proportion with correct response (P)
- Poor items have . . .
- P>90\% (too easy)
- $\mathrm{P}<20 \%$ (too hard)
- Ideal difficulty .
- 5 options: 60\%
- 4 options: 62\%
- 3 options: 66\%
- 2 options: 75\%

Item discrimination

- Point-Biserial (item-total) correlation
- Range: 0 to 1
- Higher score means more discriminating
- Guideline
- 0.40 or higher
- 0.30 to 0.39
- 0.20 to 0.29
- 0.19 or less
very good item
good item
fairly good item
poor item

Reliability - Coefficient alpha

- Ranges from 0 to 1
- Higher means more reliable
- Guideline
- 0.90 or higher
- 0.80 to 0.90
- 0.70 to 0.80
- 0.60 to 0.70
- 0.50 to 0.60
- 0.50 or below
excellent (standardized tests)
very good (for classroom tests)
good (typical classroom test)
low
need to revise
questionable
- Larger number of items improves reliability
- Should be clearly incorrect
- Appeal to low scorers; infrequently chosen by high scorers
- Examine frequency table
- Chosen by few = implausible, replace
- Chosen by many = confusing, misleading
- Should be reasonably uniform distribution among those getting question wrong
- Crosstab by ability can also give insight

